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Enskog Transport Calculations with Magpie

Kirill A. Velizhanin, T-1∗

(Dated: 01/28/21)

The revised Enskog theory for mixtures has been implemented, as a library, in the LANL insti-
tutional thermochemical code Magpie. This report provides the necessary physical background and
several representative examples of transport calculations with this library. The particular attention
is paid to how the contributions of non-translational degrees of freedom (molecular vibrations, ro-
tations, electronic excitations) to the energy transport can be consistently accounted for via the so
called Eucken correction.

I. INTRODUCTION

Magpie is a Python-based LANL thermochemical code/library with one of the main capabilities being evaluation
of a thermodynamically complete equation of state (EOS) of a dense mixture of gases/fluids subject to chemical
equilibration [14]. The EOS of the mixture is evaluated using the Ross variational perturbation theory [13], where
an effective hard sphere diameter of molecules of each chemical species in the mixture is evaluated as a by-product.
In certain applications, the EOS needs to be supplemented with transport properties of the mixture, e.g., thermal
conductivity or viscosity. The Chapman-Enskog and Enskog theories can be suitable for this [2]. The former theory
relies on the exact intermolecular interaction potential and is, therefore, expected to be very accurate within the
domain of its applicability. However, it is only applicable at low densities where the mean free path is much larger
than the molecular diameter which makes this theory inapplicable for dense mixtures. Another complication is that
in mixtures the number of parameters to describe the intermolecular potentials grows quadratically with the number
of chemical species and such parameters are rarely available. On the other hand, the Enskog theory is based on
approximating the repulsive part of intermolecular potentials by that of hard spheres and neglecting the attraction
part. The Enskog theory’s formulae is applicable at arbitrary densities, and the hard sphere diameters, required for
evaluation of collision integrals, can by provided by the Ross perturbation theory, as implemented in Magpie. Since
the intermolecular attraction is neglected and the repulsion assumed very sharp (i.e., hard spheres), the Enskog theory
is expected to be accurate for either highly compressed mixtures (packing fraction ∼ 1) at arbitrary temperatures, or
for mixtures of arbitrary density at temperatures significantly higher than the critical temperature.

We have implemented the Enskog theory in Magpie as a library, i.e., a set of functions that evaluate transport
coefficients and some auxiliary thermodynamic quantities. This report provides the physical background and illustra-
tive examples for how the Enskog theory can be used to calculate the transport properties of mixtures. This is not a
manual in a sense that it does not provide information about what functions to call and with what input arguments.
The main focus of this report turned out to be how to correctly account for the non-translational degrees of freedom
of a molecule (e.g., vibrations, rotations) when evaluating the energy flux and related quantities. The “pure” Enskog
theory, as for example described and used in Refs. [4, 9], does not deal with the non-translational degrees of freedom,
so the so called Eucken correction [5] is introduced, described and illustrated by several examples in this work. Some of
the transport properties are unaffected by the non-translational degrees of freedom under the approximations specific
to the Eucken correction. This is the reason why, for example, the viscosity - an important transport property - is
discussed only briefly here.

The report is organized as follows. Overview of the general theory is given in Sec. II, where a particular attention
is paid to how to describe transport in a regime where fast chemical equilibration is present, Sec. II A. The “pure”
Enskog theory and how to modify it to account for the non-translational (or intra-molecular) degrees of freedom is
described in Sec. III. Illustrative examples are provided and discussed in Sec. A. Sec. V concludes.

∗ kirill@lanl.gov
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II. GENERAL THEORY OF IRREVERSIBLE PROCESSES IN HYDRODYNAMICS

The Euler equations for the specific (i.e., per unit mass) internal energy and density of species i within a mixture
are

ė = −P
ρ

(∇ · u) , (1)

ρ̇i = −ρi (∇ · u) , (2)

where i = 1, 2, . . . , N (N is the number of chemical species), the dot above variables denotes the material time
derivative, P is the pressure and ρ =

∑
i ρi is the total density. The center of mass particle velocity u is defined by

ρu =
∑
i ρiui, where ui is the flow velocity of species i. Adding such irreversible processes as energy and material

transport, as well as chemical transformations results in the following equations [3]

ė = −P
ρ

(∇ · u)− 1

ρ
(∇ · Je) , (3)

ρ̇i = −ρi (∇ · u)− (∇ · Ji) +Ri({ρ}, e), (4)

where Je is the energy flux (energy per unit area per unit time), and Ji = ρi(ui − u) is the material flux of species
i defined relative to the center of mass movement (mass per unit area per unit time). Notation for the set of all
the densities is {ρ} = {ρi|i = 1, 2, . . . , N}. Pressure is given by the EOS as P = P ({ρ}, e). The rate of chemical
transformations is given by Ri (density per unit time). The mass conservation and the definition of Ji imply

∑
iRi = 0

and
∑
i Ji = 0, respectively. We further assume that deviations from equilibrium with respect to mass and energy

fluxes are not large, so we can write the fluxes using the linear transport coefficients as [3]

Ji =
∑
j

LijXj + LieXe,

Je =
∑
i

LeiXi + LeeXe, (5)

where the transport “forces” are defined as

Xi = −T∇(µi/T ), (6)

Xe = −T−1∇T, (7)

where T is the temperature. The chemical potential µi of species i is introduced via the exact differential for the
extensive internal energy dE = TdS − PdV +

∑
i µidMi, where Mi is the total mass of species i in the system. This

definition of the chemical potential, typical in transport literature, is different from the one given by the standard
extensive expression dE = TdS − PdV +

∑
i µ

(c)
i dNi typically used in physical chemistry, where Ni is the total

extensive number of molecules in the system. The relation between the two is then µi = µ
(c)
i /mi, where mi is the

mass of the single molecule of species i.
The choice of the forces, Eqs. (6) and (7), is not unique. For example, Xi could be chosen to be proportional to

the gradient of concentration. The specific choice of the forces here is motivated by the Onsager theory of reciprocal
relations [3, 12], which can be used to demonstrate that the transport coefficients are symmetric, Lij = Lji and
Lei = Lie, for the choice of forces given by Eqs. (6) and (7). Other matrix properties,

∑
i Lij = 0 and

∑
i Lie = 0,

follow from
∑
i Ji = 0. In particular, this implies that L11 and L1e vanish for a mono-component gas/fluid.

It is instructive to use Eqs. (3) and (4) to calculate the material derivative of specific entropy. To this end, we
re-write the exact extensive differential dE = TdS − PdV +

∑
i µidMi as

Tds = de− P

ρ2
dρ−

∑
i

µid

(
ρi
ρ

)
. (8)

Substituting Eqs. (3) and (4) into this equation we obtain

T ṡ = −1

ρ
(∇ · Je) +

∑
i

µi
ρ

(∇ · Ji)−
∑
i

µi
ρ
Ri. (9)
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Further, using Eqs. (5) and (7) produces

ρṡ = −∇ ·
(
Je −

∑
i µiJi

T

)
+
XeJe +

∑
iXiJi

T
− 1

T

∑
i

µiRi. (10)

Entropy change in the unit volume, ρṡ, is thus given by the divergence of the “entropy flux”, the first r.h.s. term, and
the spatially local production of entropy due to (i) energy and mass transport, the second r.h.s. term, as well as (ii)
chemical transformations, the third r.h.s. term. The last two terms must be positive semi-definite according to the
second law of thermodynamics, which for mass/energy transport implies that the matrix

Lee Le1 . . . LeN
L1e L11 . . . L1N

...
...

. . .
...

LNe LN1 . . . LNN

 (11)

is positive semi-definite. Chemical reactions always proceed in the direction of decreasing Gibbs free energy at constant
P and T , so that dg =

∑
i µiRi ≤ 0, and so the last term term in Eq. (10) is strictly non-negative. That the evolution

of entropy in Eq. (10) is governed only by Ji, Je and Ri, and not by general hydrodynamic evolution coming from
Eq. (2), explains why the corresponding processes of the mass/energy transport and chemical transformations are
referred to as irreversible here.

A. Fast Chemical Equilibration

An important limiting case is when the timescale of local chemical equilibration τchem ∝ R−1i is significantly
shorter than the fastest of the hydrodynamic and energy/mass transport timescales τ∗. For any local state ({ρ},
e) it is convenient to introduce ρ̃i({ρ}, e) - the density resulting from chemical equilibration of an isolated system
(i.e., no energy or mass flows) of constant volume subject to elemental densities fixed by {ρ}. What is implied
here is that chemical transformations, determined by Ri, are assumed ergodic on the timescale τchem. It might not
be the case when the considered {Ri} do constitute a thermodynamically complete set of transformations, or some
transformations are slow. We only consider chemical transformations that are ergodic in this work.

We consider integration of Eqs. (3) and (4) over the time step ∆t chosen so that τchem � ∆t� τ∗. The integration
is performed in two steps in the first-order operator splitting manner where, first, Eqs. (3) and (4) are evolved over
∆t with Ri set to zero, and then only chemical reactions are propagated over ∆t in a cell of constant internal energy
and volume, with no mass transport. The initial state before the integration step is e(t) and {ρ(t)}, where the density
is assumed “equilibrated”, i.e., ρi(t) = ρ̃i({ρ(t)}, e(t)). Upon the first step, the energy and density change by

∆1e = −P
ρ

(∇ · u) ∆t− 1

ρ
(∇ · Je) ∆t, (12)

∆1ρi = −ρi (∇ · u) ∆t− (∇ · Ji) ∆t. (13)

The second step does not change internal energy, but transforms the density ρi(t) + ∆1ρi to

ρi(t+ ∆t) = ρ̃i({ρ(t) + ∆1ρ}, e(t) + ∆1e) ≈
∑
j

∂ρ̃i
∂ρj

∆1ρj +
∂ρ̃i
∂e

∆1e, (14)

where all the partial derivatives of ρ̃i are evaluated at the state {ρ(t)}, e. Combining the results of the two steps,
Eqs. (3) and (4) become

ė = −P
ρ

(∇ · u)− 1

ρ
(∇ · Je) , (15)

ρ̇i =
∑
j

∂ρ̃i
∂ρj

[−ρj (∇ · u)− (∇ · Jj)] +
∂ρ̃i
∂e

ė. (16)

What this result physically means is that to describe the situation with the very fast chemical equilibration, one can
still use Eqs. (3) and (4) with Ri set to zero, but the resulting ρi(t) must not be taken literally. Instead, {ρ(t)} just
fixes the elemental densities and the actual density is given by ρ̃i({ρ(t)}, e), and this is this last density that has to
be used to calculate transport fluxes Ji, Je, as well as the pressure.
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We now use the same approach for the entropy evolution. The first step of the operator splitting approach yields

ρ∆1s = −∇ ·
(
Je −

∑
i µiJi

T

)
∆t+

XeJe +
∑
iXiJi

T
∆t. (17)

The second step corresponds to the local entropy production due to chemical transformations at constant internal
energy

∆2s = s ({ρ̃ ({ρ+ ∆1ρ}, ε+ ∆1ε)}, ε+ ∆1ε)− s({ρ+ ∆1ρ}, ε+ ∆1ε). (18)

Since ρ̃i({ρ}, e) effectively produces the full chemical equilibration of {ρ}, then s({ρ}, e), as a function of {ρ}, reaches
its maximum at ρ̃({ρ}, e) subject to the elemental densities constrained by {ρ}. It is then straightforward to show
using the two-variable Taylor expansion and that ρi(t) is equilibrated (i.e., ρi(t) = ρ̃i({ρ(t)}, e(t)), that

ρ̃ ({ρ(t) + ∆1ρ}, e(t) + ∆1e) = ρ(t) +O(∆t). (19)

Since s ({ρ̃ ({ρ+ ∆1ρ}, ε+ ∆1ε)}, ε+ ∆1ε) is the entropy’s maximum, we have ∆2s = O(∆t2), and therefore it can
be neglected compared to ∆1s. Therefore, the entropy evolution can just be calculated with Eq. (10) with the last
term omitted. It could be more complicated when the chemical reaction does not lead to complete equilibration (i.e.,
non-ergodic), that is when the large-time asymptotic solution of ρ̇′i = Ri({ρ′}, e) with the initial density {ρ} does not
produce ρ̃i({ρ}, e).

III. ENSKOG THEORY

The Enskog theory is an approximate method for evaluating transport coefficients for a gas/fluid of hard spheres
[2, 5]. In Magpie we have implemented the so called revised Enskog theory (RET) for mixtures [9], where “mixtures”
stands for the gas/fluid composed of multiple hard-sphere species (each specified by the diameter and mass of a
hard-sphere, and the concentration), and “revised” means that this version of the multi-component Enskog theory
preserves the symmetry of the Onsager coefficients, unlike some earlier attempts.

With regards to the notation and quantities to be calculated, we most closely follow Ref. [4]. Specifically, the
Magpie-based implementation of RET allows one to evaluate transport coefficients L(E)

ij , L(E)
ie , L(E)

ee , D(E)
i and η(E),

where the first three transport coefficients were introduced above, the self-diffusion coefficient D(E)
i will be introduced

in what follows, and η(E) is the dynamic viscosity. The superscript “(E)” stands for Enskog. The reason we explicitly
have this superscript is that since the Enskog theory has been developed for hard spheres, it does not describe the
energy transport due to the internal degrees of freedom (iDOF), which include rotations, vibrations and electronic
excitations. Therefore, RET has to be modified when dealing with molecules, as well as atoms if electronic excitations
are deemed important. This can be done approximately by treating the collision between the molecules as independent
of the specific iDOF state, i.e., (i) the probability of energy exchange between the iDOFs of a pair of colliding molecules
is assumed small during a single collision, and (ii) collision integrals are only weakly dependent on the specific energy
accumulated in iDOFs . In what follows we relate the Enskog transport coefficients to the “full” ones using the
approach where molecules of the same chemical species, but in different quantum states with regard to iDOFs are
now considered separate species [5, 7]. These new species are indexed by greek letters α, β in what follows. On the
other hand, latin indices i, j enumerate chemical spices without the regard of the quantum state. Then, function c(α)
denotes the chemical species (hence “c”) to which new species α belongs. Accordingly, the mass and energy fluxes can
be written as [5]

Jα =
∑
β

L
(E)
αβ X

(E)
β + L(E)

αe Xe, (20)

Je =
∑
α

L(E)
eα X

(E)
α +

∑
α

L(E)
ee Xe +

∑
α

εαJα, (21)

where εα is the iDOF energy of the unit mass of species α. The Enskog mass force is defined as X(E)
α = −T∇

(
µ(tr)
α

T

)
,

where µ(tr)
α is the translational chemical potential (not the full one!) for the species α. For example, this translational

chemical potential can be calculated from the Carnahan-Starling EOS [4, 10] in the case of the Enskog mixture theory,
or directly from Magpie. The goal here is to convert these expressions to the form where the summations with respect
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to specific quantum states are substituted with summations over chemical species. First, one can show combinatorially
that the chemical potential for molecules in state α is

µ(tr)
α = µ

(tr)
c(α) +

kBT

mc(α)
ln

ρα
ρc(α)

, (22)

where ρc(α) =
∑
β∈c(α) ρβ is the density of chemical species of the sort index α points to. Notation β ∈ c(α) means the

set of all β that correspond to the same chemical species α belongs to, i.e., going over all β that satisfy c(β) = c(α).
Mass of a single molecule of chemical species i is denoted by mi. Chemical potential µ(tr)

i is the translational chemical
potential of chemical species i as if they are all in the same quantum state. With this chemical potential, the mass
force reads as

X(E)
α = −T∇

(
µ
(tr)
α

T

)
= −T∇

µ(tr)
c(α)

T
+

kB
mc(α)

ln
ρα
ρc(α)

 = X
(E)
c(α) −

kBT

mc(α)

(
∇ρα
ρα
−
∇ρc(α)
ρc(α)

)
. (23)

The relation between ρα and ρc(α) is determined by the the local temperature, ρα = pα(T )ρi(α), where
∑
α∈i pα = 1.

This assumes that equilibration over iDOF states is very fast. Using this expression, we have

∇ρα
ρα

=
∇pα
pα

+
∇ρc(α)
ρc(α)

, (24)

so that

X(E)
α = X

(E)
c(α) −

kBT

mc(α)

∇pα
pα

. (25)

The expression for the energy flux becomes

Je =
∑
α

L(E)
eα

[
X

(E)
c(α) −

kBT

mc(α)

∇pα
pα

]
+
∑
α

L(E)
ee Xe +

∑
α

εα

∑
β

L
(E)
αβ

[
X

(E)
c(β) −

kBT

mc(β)

∇pβ
pβ

]
+ L(E)

αe Xe

 . (26)

To proceed further we use the relations between L(E)
eα , L(E)

αβ and L(E)
ei , L(E)

ij , obtained in App. A. The result is

Je =
∑
i

L(E)
ei +

∑
j

εjL
(E)
ji

X(E)
i +

[
L(E)
ee +

∑
i

εiL
(E)
ie + T

∑
i

ciD
(E)
i ρi

]
Xe, (27)

where εi =
∑
α∈i pαεα is the average iDOF energy, and ci = dεi

dT is the corresponding heat capacity. The self-diffusion
coefficient of chemical species i, evaluated with RET as described in App. A, is denoted by D(E)

i . In another form,
Eq. (27) could also be written as

Je = J (E)
e +

∑
i

εiJ
(E)
i + T

∑
i

ciD
(E)
i ρiXe. (28)

Applying the transformations above to Eq. (20) converts it to

Ji =
∑
j

L
(E)
ij X

(E)
j + L

(E)
ie Xe, (29)

which means that Ji = J
(E)
i . This result is of course expected since separating species into subspecies with no

difference in collisional properties does not affect the mass transport. The self-diffusion is not affected by iDOF for
the same reason, so Di = D

(E)
i . Finally, it also does not affect momentum transfer, so the viscosity is not changed

by accounting for iDOF resulting in η = η(E). In what follows, whenever a “full” and “pure Enskog” quantities are
physically the same, the superscript (E) will be omitted, for example we will not use D(E)

i below even though this
value will be obtained directly from the pure Enskog calculations, since Di = D

(E)
i . In fact, this convention has

already been used above by not introducing X(E)
e , since obviously Xe = X

(E)
e .
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A. Entropy production

To write down the entropy balance equation we use Eq. (9) but with Ri omitted (as has to be done when the local
chemical equilibration is fast), with the energy flux given by Eq. (27), and chemical potential modified by accounting
for iDOF

µi = µ
(tr)
i + εi − Tsi, (30)

where si =
∑
α∈i pαsα is the average iDOF entropy. The result is

ρṡ = − 1

T
∇ ·

[
J (E)
e +

∑
i

εiJ
(E)
i + T

∑
i

ciDiρiXe

]
+
∑
i

µ
(tr)
i + εi − Tsi

T

(
∇ · J (E)

i

)
. (31)

The series of elementary (but somewhat tedious) transformations, using identities ∇(εi/T ) = (εi/T − ci)Xe and
ci = dεi

dT = T dsi
dT , results in

ρṡ = −∇ ·

[
Je −

∑
i µiJ

(E)
i

T

]
+
XeJ

(E)
e +

∑
iX

(E)
i J

(E)
i + T

∑
i ciDiρiX

2
e

T
, (32)

where Je in the first term is indeed the full Je, and not just J (E)
e . An important observation here is that the local

production, i.e., the second r.h.s. term, is strictly non-negative. This is good because it means that the Eucken
correction does not break the physical consistency of the RET.

B. Full forces

Eqs. (27) and (29) are not of the form (5), where the contribution of Xe to Ji and that of Xi to Je do have the
same transport coefficient due to the Onsager symmetry. To restore that symmetry, one needs to introduce the mass
force based not on the “translational” chemical potential, but on the full one, given by Eq. (30). To this end, we
substitute Eq. (30) into Eq. (6) to produce the full mass force as

Xi = X
(E)
i − εiXe. (33)

Using this full force allows one to rewrite Eqs. (29) and (27) as

Ji =
∑
j

L
(E)
ij Xj +

L(E)
ie +

∑
j

εjL
(E)
ji

Xe, (34)

Je =
∑
i

L(E)
ei +

∑
j

εjL
(E)
ji

Xi +

L(E)
ee + 2

∑
i

εiL
(E)
ie +

∑
ij

εiεjL
(E)
ij + T

∑
i

ciD
(E)
i ρi

Xe. (35)

The full transport coefficients thus become

Lij = L
(E)
ij , (36)

Lie = Lei = L
(E)
ie +

∑
j

εjL
(E)
ji , (37)

Lee = L(E)
ee + 2

∑
i

εiL
(E)
ie +

∑
ij

εiεjL
(E)
ij + T

∑
i

ciD
(E)
i ρi. (38)

Importantly, the new cross coefficient Lie = L
(E)
ie +

∑
j εjL

(E)
ji is the same in the both equations for Ji and Je, and

Lij = Lji. This means that the adopted approximation for the iDOF contribution to the energy transfer - the Eucken
correction - is internally consistent in a sense that it preserves the Onsager symmetry of transport coefficient [3, 12].
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C. Temperature Change

We now evaluate the material derivative of temperature. To this end, we treat the internal energy as a function of
species densities and temperature, e = e({ρ}, T ). Then

ė =
∑
i

(
∂e

∂ρi

)
{ρ}i,T

ρ̇i +

(
∂e

∂T

)
{ρ}

Ṫ , (39)

where {ρ}i is the set of all densities with ρi being excluded. Using Eq. (3) and (4) we obtain

CV

[
dT

dt

]
irr

=
∑
i

(
∂e

∂ρi

)
{ρi}′,T

(∇ · Ji)−
1

ρ
(∇ · Je) , (40)

where we omitted the reversible hydrodynamic terms in the r.h.s., and so we obtain not the complete material
derivative of temperature, but only its irreversible component, hence [.]irr in the l.h.s. The specific constant-volume
heat capacity is denoted by CV =

(
∂e
∂T

)
{ρ}. The mass and energy fluxes are given by Eqs. (34) and (35), respectively.

The obtained expression does not include the chemical transformation rates Ri explicitly and is therefore applicable
it the two opposite limits of very slow and very fast chemistry. In the former case, the expression is applied literally.
In the latter case, it is also applicable but the function e = e({ρ}, T ) has to be understood in a way that {ρ} is
only constraining the elemental densities and the actual energy is evaluated at densities resulting from the complete
chemical equilibration of {ρ} at temperature T .

An important application of Magpie is to produce an EOS for a system with fixed elemental abundances and very
fast chemical equilibration. Under these conditions, EOS can be written as

P = P (ρ, e), (41)

where ρ is the total density. Such EOS, generated by Magpie, is applicable in problems of chemical decomposition of
HE, where the chemistry is coupled to hydrodynamics [14]. In such cases, since the elemental abundances are assumed
fixed, it is convenient to treat the mixture of products as an effectively single-component fluid, i.e., not keeping track
of local densities of chemical species ρi, just like in Eq. (41). Such single-component treatment is however generally
impossible when transport is present, since the mass transport can change elemental abundances locally. Ignoring the
mass transport on the level of EOS, i.e., ignoring the variation of elemental abundances, might lead to inaccuracies
but generally preserve conservation laws. However, the heat conduction for a single-component system cannot be
generally written as the Fourier’s law ρCV

[
dT
dt

]
irr

= ∇· (κ∇T ) since there are multiple terms with spatial derivatives
in Eq. (40) and it is generally impossible to rewrite them exactly as a single divergence operator of some vector field.
The problem with this is that the divergence in the Fourier’s law guarantees the energy conservation, which would
not be preserved generally if we combine Eq. (40) with the assumption of the single-component system, that is if the
local elemental abundances are assumed invariant. One possibility to fix the energy preservation and to still assume a
single-component system is to set Ji to zero in Eq. (40). However, this might lead to physically inconsistent situations
since for example just setting Ji = 0 in Eq. (10) does not generally preserve positivity of the local entropy production
in Eq. (32). The simplest (but not necessarily the most accurate) way of combining the requirements of (i) positivity
of entropy production, (ii) single component assumption, and (iii) the Fourier’s law form of Eq. (40) is to assume
that the local equilibration with respect to mass transport is established much faster than the local equilibration with
respect to energy transport. Then, for any given Xe one finds Xi so that Ji vanishes in Eq. (34). The result of this
is that the entropy production is still positive since no terms are omitted in Eq. (10), some of them just vanish in a
physically consistent manner because of the specific relationship between Xe and Xi, and Eq. (40) reduces to

ρCV

[
dT

dt

]
irr

= −∇ · Je, (42)

which is exactly of the Fourier’s law form. Writing this expression more explicitly produces

ρCV

[
dT

dt

]
irr

= −∇ ·

[∑
i

LeiX
′
i + LeeXe

]
, (43)

where X ′i is not an independent mass force, but, as mentioned above, is found by solving the following system of
linear equations

0 = Ji = LieXe +
∑
j

LijX
′
j . (44)
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This system of equations is under-defined because
∑
i Ji = 0 is always the case. From the perspective of X ′j , we see

that if it satisfies the equations, then X ′j + δ also satisfies it since
∑
j Lij = 0. On the other hand, this freedom in

X ′j does not affect the energy flux since Je = LeeXe +
∑
i LeiX

′
i does not change upon the substitution X ′j → X ′j + δ

since
∑
i Lei = 0. To properly solve the system we can always add an additional equation

∑
iX
′
i = 0 and solve the

resulting system of equations using the singular value decomposition. The solution of this problem can be expressed
as X ′i = MiXe. Then we have

ρCV

[
dT

dt

]
irr

= ∇ ·
[
Lee +

∑
i LeiMi

T
∇T
]
, (45)

and, therefore, the effective single-component thermal conductivity is

κ∞ =
Lee +

∑
i LeiMi

T
. (46)

In an arbitrary equilibrium system where the temperature gradient is “turned on” instantaneously at t = 0 and
maintained constant at t > 0, the mass fluxes are present transiently due to the thermal diffusion but then vanish
at t → ∞ when concentration gradients have set up. The energy flux at large times is, therefore, exactly the one
determined by Eqs. (45) and (46), and so the subscript of κ∞ refers to the t→∞ regime [3].

Eq. (46) can also be written for the case where iDOF are not accounted for to produce κ(E)
∞ . It is convenient to

express κ∞ through κ(E)
∞ . To this end, we take Eq. (28) without the second r.h.s term since all the mass fluxes vanish

for κ∞

Je = J (E)
e + T

∑
i

ciDiρiXe. (47)

Since Je = −κ∞∇T and J (E)
e = −κ(E)

∞ ∇T , we obtain

κ∞ = κ(E)
∞ +

∑
i

ciDiρi. (48)

For a single-component gas this formula is equivalent to the improved Eucken correction, Eq. (11.2-20) in Ref.
(author?) [5]. The obtained expression is very convenient because it allows us to calculate κ(E)

∞ and Di directly from
the pure (i.e., without iDOF) Enskog theory and then calculate κ∞ using ci obtained from Magpie.

IV. RESULTS AND DISCUSSION

We start this section by demonstrating how to calculate transport properties of a static binary mixture with no
iDOF. The mixture is static in a sense that there is no chemical equilibration and the molar fractions of chemical
species are independent of pressure and temperature. The molar masses of the two species are 18 g/mol and 44 g/mol,
and the mixture is 1 : 1 by moles. Here, and in what follows the notation x : y will always be used to specify mixture by
moles (and not by weight), so that the molar fractions are x

x+y and y
x+y . The two options for the molecular diameters

are (i) constant PT -independent hard sphere diameters of 2.65 Å and 3.3 Å chosen to approximately represent H2O
and CO2, respectively [8], and (ii) the effective molecular diameters for H2O and CO2, obtained in Magpie with
the use of the Ross variational perturbation theory [13, 14]. The constant hard sphere diameters and Ross effective
diameters, evaluated at T = 3000 K(chosen arbitrarily) within a range of total densities, are depicted by solid and
dashed lines, respectively, in the left panel of Fig. 1.

The right panel of Fig. 1 gives the pressure of the mixture as a function of density. The solid line represents
the pressure of the constant-diameter hard spheres, evaluated with the Carnahan-Starling EOS (CS-EOS) [4, 10],
implemented as a part of the Enskog transport module. The dashed line is the pressure obtained in Magpie from
the Ross theory. At large densities corresponding to packing fractions ∼ 1, the system transitions to a condensed
phase (solid phase for constant-diameter hard spheres [6]), and the pressure starts diverging rapidly with density.
Fig. 2 shows the dependence of a set of linearly independent RET transport coefficients on density. All the other
transport coefficients can be restored using the general matrix properties of L(E)

ij and L
(E)
1e discussed in Sec. II.

Specifically, for the binary mixture one has L(E)
11 = −L(E)

12 = −L(E)
21 = L

(E)
22 and L

(E)
1e = L

(E)
e1 = −L(E)

2e = −L(E)
e2 .

Other properties, in the form of inequalities, follow from the semi-definiteness of the matrix of transport coefficients
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Figure 1. (left) Molecular diameters in the 1 : 1 mixture of H2O and CO2 at T = 3000K. (right) Pressure of the mixture
at the same temperature is evaluated with CS-EOS for constant-diameter hard spheres (solid black line) and with the Ross
perturbation theory (dashed black line).

Figure 2. Pure Enskog transport coefficients for the 1 : 1 mixture of H2O and CO2 at T = 3000K.

in Eq. (11). Specifically, it dictates that L(E)
ii , L

(E)
ee > 0 [3], which is what is observed in the left and right panels.

The inequalities for L(E)
ie are more complex [3]

L
(E)
ii L(E)

ee >
[
L
(E)
ie

]2
, (49)

and so these coefficients can change sign as is exemplified in the middle panel.
The dependence of the transport coefficients on density could be quite involved. We consider the situation where

the temperature is constant, i.e., Xe = 0, and so Eq. (5) becomes

J1 = L
(E)
11 (X1 −X2),

J2 = L
(E)
11 (X2 −X1),

Je = L
(E)
1e (X1 −X2).

At low densities, i.e., in the almost-ideal gas situation, the mass and energy fluxes are dominated by the component
of the mixture with the lowest molecular mass (the first component in our case), since its molecules are fastest. It can
be demonstrated that Xi ∝ −∇ρi for the ideal gas and since, physically we must have J1 ∝ −∇ρ1 and Je ∝ −∇ρ1,
we conclude that the both L(E)

11 and L(E)
1e are to be positive at low densities (L(E)

11 is in fact positive at any density, as
discussed above). This prediction agrees with what is seen in the left two panels of Fig. 2.

At large densities, the chemical potentials of the components grow very quickly and diverge at a finite density for
the CS-EOS [4]. Accordingly, the magnitude of Xi could become very large. On the other hand, the material fluxes
must vanish under these conditions since the hard spheres jam above the fluid-to-solid phase transition. This leads
to a prediction that L(E)

ij drop quickly at large densities which is indeed what is seen in the left panel of Fig. 2. The
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energy flux does not vanish even when the hard spheres jam, since the energy is transferred by molecular collisions of
adjacent molecules. Under these conditions, what is expected to dominate the energy transport is the component with
the larger excluded volume (the second component in our case), because this is the molecules of this component that
jam and, therefore, transfer energy effectively through the “jammed lattice”. Therefore, it is expected that Je ∝ −∇ρ2
and since X2 ∝ −∇ρ2, we predict that L(E)

1e becomes negative at large densities [11], in agreement with the numerical
results in the middle panel of Fig. 2.

With regards to L(E)
ee , it was already discussed that it must always stay non-negative. More can be said about its

dependence on density with the help of Eq. (49). The coefficient L(E)
1e is observed to change not too rapidly at large

densities in middle panel of Fig. 2, whereas L(E)
11 drops quickly in the left panel of the same figure. Setting i = 1

in Eq. (49) produces L(E)
11 L

(E)
ee >

[
L
(E)
1e

]2
, and so L(E)

ee has to grow rapidly with density to satisfy this inequality at

rapidly decaying L(E)
11 . This expected rapid growth is indeed observed in the right panel of Fig. 2.

The self-diffusion coefficients for the two chemical species are given in the leftmost panel of Fig. 3. Since it

Figure 3. (left) Self-diffusion coefficients, (middle) thermal conductivity, and (right) the dynamic viscosity for the 1 : 1 mixture
of H2O and CO2 at T = 3000K.

describes the mass transport, it decays rapidly with density when the system undergoes gas-to-fluid/solid transition.
The dependence of the thermal conductivity κ(E)

∞ , Eq. (46), on density is shown in the middle panel of Fig. 3. At
large densities, where Lei is small, Eq. (46) reduces to κ∞ = Lee/T , and so the middle panel of Fig. 3 and the
rightmost panel of Fig. 2 look very similar. The dynamic viscosity η is plotted in the rightmost panel of Fig. 3 and
is seen to grow rapidly with density at large densities. The values for the thermal conductivity and the viscosity at
P = 20 GPa (ρ ≈ 1.8 g/cm) are κ(E)

∞ ≈ 1.67 W/(m ·K) and η ≈ 1.8× 10−3 kg/(m · s), respectively, which is consistent
with the results of molecular dynamics simulations and Enskog calculations in Ref. [1].

A. Including iDOF

Fig. 4 shows the results for the same 1 : 1 mixture of Magpie’s H2O and CO2, where the effect of iDOF is included.
The dashed lines give the pure Enskog (i.e., no-iDOF) results, and so the dashed lines in the left and middle panels

Figure 4. Transport coefficients L1e and Lee, and thermal conductivity κ∞ for the 1 : 1 mixture of H2O and CO2 at T = 3000K.
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are exactly those previously plotted in the middle and right panels of Fig. 2. The solid lines in all the three panels
correspond to the full transport coefficients and conductivity. Specifically, the full transport coefficients L1e (left
panel) and Lee (middle panel) are evaluated with Eqs. (37) and (38), respectively. The full thermal conductivity κ∞
in the right panel is calculated with Eq. (48). The solid black lines represent the case where the iDOF energy of a
molecule is given by

ε = ε(0) +
ξ

2
kBT +

nvib∑
i=1

kBθi

[
eθi/T − 1

]−1
, (50)

where the first term is the molecular energy at zero temperature, and the second term is the free-rotation contribution
with the number of rotational degrees of freedom ξ = 3 and ξ = 2 for H2O and CO2, respectively. The third term is
the contribution of the intra-molecular vibrations, each described by a quantum harmonic oscillator with the “Einstein
temperature” θi and the zero-point energy excluded, so that this contribution vanishes at T = 0. At low temperatures
(T � θ), this last contribution is exponentially small. The transport coefficients evaluated with the vibrational
contribution set to zero (i.e., the case of a “frozen” quantum harmonic oscillator) is shown by the solid red lines. On
the other hand, the solid green lines represent the results of calculations where the last term is substituted by what
it reduces to in the high-temperature classical limit,

∑nvib
i=1 kB [T − θi/2].

The rightmost panel of Fig. 4 shows the dependence of κ(E)
∞ on total density. First, it is seen that accounting for

iDOF change the result significantly. The difference between classical and exact quantum formulations of intramolec-
ular energy (green and black lines) is not too large because of the relatively high temperature. At lower temperatures
(e.g., T < 1000, not shown) this difference becomes more pronounced since the vibrations become more quantum
mechanical, thus rendering the classical approximation less accurate. It has to be noted however that the energy flux
Je can be counter-intuitive, especially when there is chemical equilibration. In particular, in this case the total energy
shift ε(0) in Eq. (50) is rather arbitrary and, for example, it is always possible to shift the energy so that there is
energy flux from cold to hot. Such energy flux would not contradict the thermodynamics, however, as the entropy
production would stay non-negative and this energy flux would mostly be because of the “cold” energy of the molecule
- it stays with the molecule so the heat (as opposed to energy) would still flow from hot to cold.

It can be noted here that the results for exact Eq. (50) are noticeably different from the both “classical” and
“frozen” ones. This is important because it means that at considered temperatures classical molecular dynamics, or
even quantum molecular dynamics will not be very accurate since they treat vibrational motions classically.

Fig. 5 shows the result of transport calculations for H2O(g) where the chemical equilibration is performed with
respect to the dissociation reaction

2H2O(g)� 2H2(g) + O2(g). (51)

Figure 5. The dependence of the full transport coefficients on temperature for the chemically equilibrated mixture, Eq. (51),
at P = 1GPa. Species’ indices of 1, 2 and 3 in the last two panels correspond to H2, O2 and H2O, respectively.

The transport calculations are performed at P = 1 GPa in a range of temperatures. As is seen in the leftmost
panel, the chemical equilibrium in Eq. (51) is strongly shifted towards H2O(g) at low temperatures. Under these
conditions, the gas becomes effectively mono-component and so Lij and Lie vanish. At higher temperatures, all the
three components are present. The sum of the three Lie coefficients vanish exactly because of the symmetry of the
transport coefficients. Of all the nine transport coefficients Lij , only three are linearly independent. Our choices for
the three linearly independent coefficients, L11, L12 and L22, are plotted in the middle panel.

Fig. 6 shows the translational chemical potentials, µ(tr)
i in Eq. (30), evaluated for the 1 : 1 mixture of H2 and O2

gases at T = 3000 K in a range of total mixture densities. Chemical potentials are plotted multiplied by molar masses
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Figure 6. Comparison of translational chemical potentials, assuming the ideal gas, Ross perturbation theory, and CS-EOS, for
the 1 : 1 mixture of H2 (black lines) and O2(red lines) at T = 3000K.

Mi to give the molar chemical potentials. The translational chemical potentials for the ideal mixture of ideal gases,

Miµ
(tr,ideal)
i = RT ln

[
ρi
mi

(
2π~2

mikBT

)3/2]
, are plotted by solid lines and are seen to agree well (up to ρ ∼ 102 kg/m3)

with dashed lines, which represent the Ross theory, as implemented in Magpie. The results for the CS-EOS, plotted
by solid lines with small filled circles, are seen to agree with the Ross results up to ρ ∼ 103 kg/m3. At low densities the
molar chemical potential of oxygen is lower than that of hydrogen since oxygen molecules are heavier and, therefore,
more “classical” at the same temperature, i.e., the density of quantum-mechanical states is higher and so the entropy
is also higher. At very high densities, the chemical potential of oxygen becomes larger than that of hydrogen because
of the larger effective hard-sphere diameter of the former.

When evaluating energy and material fluxes with the Enskog theory, one needs to find the gradient of the chemical
potentials to evaluate the mass forces, Eq. (6). Presumably, the most accurate of the chemical potentials in Fig. 6
is the one calculated with the Ross theory. However, the particular implementation of the Enskog theory (author?)
[4, 9] was developed for constant-diameter hard spheres, and, in particular, relied on the CS-EOS when evaluating
certain parameters of the pair distribution functions. Therefore, for consistency we suggest using CS-EOS to evaluate
the chemical potentials of chemical species in gas/fluid mixtures. Employing more accurate EOS, e.g., the Ross
theory, directly within the Enskog theory is typically referred to as “modified Enskog theory” which, however, might
have internal consistency problems, see discussion in Ref. [1] and references therein. We do not discuss nor use the
“modified Enskog theory” in this work and use the CS-EOS to evaluate µ(tr)

i in the calculations in the next subsection.

B. HMX decomposition

In this subsection we consider the energy transport in a situation which, very approximately and qualitatively (but
not quantitatively), mimics the flame structure in HMX [15]. To this end, we assume that the temperature profile in
the flame is given by a rescaled and shifted error function so that the characteristic flame thickness is ∼ 1 mm, and
the temperature span is from 700 K to 5000 K. This assumed temperature profile is shown in the left panel of Fig. 7.
At each pressure and temperature, the mass fractions of “HMX decomposition products” N2, H2O, CO2, CO, NO, H2,
O2 and CH4are calculated by minimizing the Gibbs free energy of their mixture subject to the HMX stoichiometry
C4H8N8O8. The Gibbs free energy minimization is performed using Magpie [14] as a Python library. The resulting
mass fractions at P = 0.01 GPa are given in the right panel of Fig. 7.

The reason we need an actual temperature profile is that we want to see the effect of including the contributions of
iDOF on the on the efficiency of energy transfer. The energy flux Je by itself does not provide a convenient perspective
since it inherently includes such significant contributions as the energy flux due to “cold” and zero-point energies of
molecules which of course is a legitimate contribution, but it does not change local temperature. We, therefore, choose
to calculate the temperature growth rate, given by Eq. (40), and see how this rate depends on inclusion of various
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Figure 7. (left) Temperature profile used in the energy transport calculations. (right) Mass fractions of C4H8N8O8 decompo-
sition products at P = 0.01GPa.

contributions to the energy and mass fluxes. Since Eq. (40) depends not only on the first, but also on second spatial
derivatives of temperature (through terms like ∇Xe), choosing a smooth spatial profile for temperature is a natural
(but of course not unique) way to provide a link between temperature and its first and second spatial derivatives.
The black line in the left panel of Fig. 8 shows the result of evaluation of Eq. (40) with all its r.h.s terms included.
The red line gives the result where the first r.h.s term (the one with ∇ · Ji) is neglected in Eq. (40), so it acquires the

Figure 8. (left) Temperature growth rate due to the energy and mass transports within the “HMX flame” profile depicted in the
left panel of Fig. 7. (right) Thermal conductivity of the mixture of HMX decomposition products as a function of temperature
for several different pressures. Solid and dashed lines correspond to κ∞ and κ(E)

∞ , respectively, in Eq. (48).

Fourier’s law form, which is essential for hydrodynamics calculations if the concentration of all the chemical species
is not explicitly tracked. The both black and red curves are seen to be not too different, demonstrating an overall
smooth behavior except for a dip at x ∼ 0.3 mm and a spike at x ∼ 0.6 mm. From the left panel of Fig. 7, these
two peculiarities can be seen to correspond to T ≈ 1000 K and T ≈ 4000 K, respectively. These two temperatures
correspond to where the mass fractions vary substantially with temperature in the right panel of Fig. 7. Because of
these variations, the gradients of concentrations of species are large at those two temperature, resulting in substantial
mass fluxes, which contribute to the temperature growth rate. The exclusion of the Ji-based first r.h.s. term in Eq.
(40) does not make those peculiarities disappear since Ji also contributes to Je when iDOF contributions are accounted
for, as is clear from Eq. (28). It is also important to remind here that even though the exclusion of the first r.h.s term
in Eq. (40), which resulted in the red line in the left panel of Fig. 8, might seem preferable from the hydrodynamic
standpoint because of the acquired Fourier’s law form, such exclusion is not thermodynamically consistent. Indeed, Ji
is excluded only partially since its contribution to Je in Eq. (28) remains. Such partial exclusion does not guarantee
the positive entropy production in Eq. (32) and is, therefore, potentially dangerous. Instead, the complete exclusion
of Ji can be performed in a physically consistent manner, as described at the end of Subsection III C. The result of
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this exclusion, leading to introduction of the thermal conductivity κ∞, is shown in left panel of Fig. 8 by the green
line. Even though this line lacks the previously observed peculiarities, related to large concentration gradients of
chemical species, it still provides a reasonable approximation to the full result, given by the black line. Therefore, in
a situation where the concentration of separate species is not explicitly tracked in hydrodynamic simulations, the last
approach is preferred because of its internal physical consistency.

The right panel of Fig. 8 shows the thermal conductivity as the function of temperature along four representative
isobars. The full thermal conductivity κ∞ and the pure Enskog one κ(E)

∞ are represented by the solid and dashed lines,
respectively. At high pressures (i.e., packing fraction ∼ 1), material fluxes and self-diffusion are strongly suppressed
and therefore the non-translational contributions are small [1], as is evidenced by the small difference between the
solid and dashed blues lines, P = 30 GPa. However, the contribution of the iDOF to the thermal conductivity could
be of the same order of magnitude as the translational one at lower pressures (black and red lines in the right panel
of Fig. 8), and therefore cannot be ignored.

V. CONCLUSION

In conclusion we provide the algorithm for how to calculate the transport properties of a mixture:

1. Magpie EOS is obtained for a mixture, for example 1 : 1 mixture of H2O and CO2, in Magpie. The mixture
can be chemically equilibrated or not. In the former case the “input mixture” serves merely to set the overall
elemental abundances and the actual concentrations of species could be different and pressure- and temperature-
dependent (for example H2, O2 and CO could be produced in appreciable amounts for the discussed mixture of
water and carbon dioxide).

2. The effective hard sphere diameters are calculated inside the Magpie EOS. This value could be extracted by an
auxiliary function provided with the Enskog library.

3. These diameters, along with the species concentrations (chemically equilibrated or not) and the molecular masses
are used to evaluate the pure Enskog transport coefficients L(E)

ij , L(E)
ie , L(E)

ee , self-diffusion coefficients Di and,
for example, viscosity.

4. Pure Enskog transport coefficients and the self-diffusion coefficients are then used, together with iDOF energies
εi (obtained from an auxiliary function from the Enskog library) to evaluate the full transport coefficients with
Eqs. (37) and (38).

5. To now evaluate the energy and mass fluxes, one has to calculate the transport forces. The “energy” force is
given by Eq. (7). The “mass” force is evaluated with Eq. (6), where the full chemical potential is given by Eq.
(30).

6. We suggest calculating the translational part of the chemical potential with the CS-EOS, even though it is also
available from the supposedly more accurate Magpie EOS. This is because the particular implementation of the
Enskog theory for mixtures [4, 9] relies internally on CS-EOS, and, therefore, using chemical potentials from
other sources might lead to physical inconsistencies.

7. The same function in the Enskog library, that calculates the pure Enskog transport coefficients, also calculates
κ
(E)
∞ . Eq. (48) is then used to calculate the thermal conductivity κ∞, which accounts for iDOF.
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Appendix A: Relationship between L
(E)
ie , L(E)

ij and L
(E)
αe , L(E)

αβ

We consider the case similar to Sec. III where within each chemical species i one can distinguish multiple subspecies,
so greek letters α, β are in fact multi-indices that enumerate both chemical species and subspecies within. We assume
that the collisional properties are only dependent on what chemical species are colliding, and are independent of the
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specific subspecies. Under this conditions, it is expected that the transport coefficients L(E)
αe and L(E)

αβ can be expression

via L(E)
ie , L(E)

ij . In this section we consider two specific cases which will allow us to establish such relationships.
The first case corresponds to a system where there is no equilibration of the iDOFs, and pα do no vary spatially

even though ρi are allowed to very spatially. Under these conditions, since transport properties cannot distinguish
between different subspecies of the same chemical species, pα remains the same over time, which of course requires
J
(E)
α = pαJ

(E)
c(α). More explicitly, this equation is

L(E)
αe Xe +

∑
β

L
(E)
αβ X

(E)
β = pα

L(E)
c(α)eXe +

∑
j

L
(E)
c(α)jX

(E)
j

 . (A1)

Since pα does not vary spatially, Eq. (25) results in Xα = Xi(α), and so the above equation transforms into

L(E)
αe Xe +

∑
β

L
(E)
αβ X

(E)
c(β) = pα

L(E)
c(α)eXe +

∑
j

L
(E)
c(α)jX

(E)
j

 . (A2)

Since this equation has to remain identity at arbitrary Xe and X(E)
i , one has the following relations

L(E)
αe = pαL

(E)
c(α)e,∑

β∈j

L
(E)
αβ = pαLc(α)j .

The second case is a system where temperature and the densities of molecular species are spatially invariant, but
pα vary spatially. Under these conditions, the mass transport for a subspecies can be written as

J (E)
α = −Dc(α)∇ρα = −Dc(α)ρc(α)∇pα, (A3)

which serves as the definition of Di - the self-diffusion coefficient of species i. On the other hand, the same flux can
be written as J (E)

α =
∑
β L

(E)
αβ X

(E)
β . For the system considered we have X(E)

i = 0, and so this expression transforms
into

J (E)
α = −

∑
β

L
(E)
αβ

kBT

mc(β)

∇pβ
pβ

. (A4)

Since this is the same flux, we have

Dc(α)ρc(α)∇pα =
∑
β

L
(E)
αβ

kBT

mc(β)

∇pβ
pβ

. (A5)

This equation has to remain identity at arbitrary local values of pα and their gradients, as long as
∑
α∈i pα = 1 and∑

α∈i∇pα = 0. Mind however that L(E)
αβ is a function of pα (but not of ∇pα).

Eq. (A5) suggests a way to evaluate self-diffusion coefficients if we have a computer code to evaluate L(E)
αβ . The

simplest way to do that is to “split” a chemical species i into two subspecies a and b so that pa + pb = 1 and
∇pa +∇pb = 0. All the other species are not split into subspecies, and therefore pα = 1 and ∇pα = 0 for c(α) 6= i.
Then, Eq. (A5) can be transformed to

Di =
kBT

miρi

(
L
(E)
aa

pa
−
L
(E)
ab

pb

)
. (A6)

Transport coefficients L(E)
aa and L(E)

ab are functions of pa and pb in such a way that the resulting Di does not depend
on their choice as long as pa + pb = 1.
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